

E-ISSN: 2788-9270 P-ISSN: 2788-9262 www.pharmajournal.net NJPS 2023; 3(2): 75-81 Received: 02-10-2023 Accepted: 09-11-2023

### Vinayak K

Research Scholar, Monad University, Hapur, Uttar Pradesh, India

#### Dr. Anuj Kumar Sharma

Professor, Monad University, Hapur, Uttar Pradesh, India Developing stable multiparticulate colonic drug delivery dosage

# Vinayak K and Dr. Anuj Kumar Sharma

### Abstract

Some of the many benefits of multiparticulate systems are that they make drugs more bioavailable and lower the risk of local discomfort and general poisoning. A number of different particle types are used, including pellets, microparticles, grains, and nanoparticles. More often than not, multiparticulate systems are better than single unit dose types because they can get into the gut faster and stay there for longer.

Keywords: Medications, effectively, orally, benefits

### Introduction

It is easy for these devices to move through the GIT because they are small. Using multiparticulate systems, which are spread out more evenly in the digestive track, can help medications be absorbed better. Instead of releasing the medication into the small intestine and stomach, a good route for delivering drugs to the colon delivers it into the colonic area. The efficacy of colon-targeted medication delivery is assessed using a Several *in vitro* and *in vivo* method.

One of the main issues for evaluating the rectal drug delivery method *in vitro* is working on a good way to test for breakdown. There are many non-traditional ways that have been written about to test how well a colon focused delivery system works in a controlled laboratory setting. The dissolving testing of colon delivery devices is done to mimic the pH and passage time of the digestive tract in real life was conducted using the conventional basket technique in various pH buffers for varied durations. The study by Yang L.*et al.* goes into length about many approaches for colon-targeted medication delivery system *in vitro* testing.

The 13th edition of the Japanese Pharmacopoeia also includes a report on a dissolution study using the paddle approach for colon focused medication administration. Both fluids, with pH levels of 1.2 and 6.8, were described as suitable for dissolving purposes. You can also make the dissolving test look like it would happen in the gut by using continuous-flow tools in a pH development medium at 370c. For enteric-coated pellets with variable pH levels, Jean Paul Ramón described the use of a reciprocating cylinder technique (Type 3 USP apparatus) 16. The equipment has also been used in conjunction with sequential dissolving liquid, which consists of simulated stomach fluid for 60 minutes and then 3-6 hours of simulated intestinal fluid. In contrast to type II equipment, apparatus III (the reciprocating cylinder) was shown by Jinhe Li *et al.* to be both appropriate and competent. The USP XXIII dissolving apparatus was shown by Akhgari A. and Sadoghi F. in fluids with pH 1.2 and 0.1 N HCl, as well as pH 6.5, 6.8, and 6.7, over time and with changes in pH. and 7.2 with phosphate buffer, replicating conditions in the gastrointestinal system.

## Literature review

V.R. Sinha *et al.* (2022) <sup>[1]</sup>, Core tablets containing Indomethacin and binders such as polysaccharides xanthan gum, guar gum, chitosan, or synthetic polymers such as Eudragit E Apparently, Eudragit-L 100 was covered on the inside of their bodies. Instead of guar gum, chitosan showed potential as a colon-targeting binding in the study.

C.W. Leong *et al.* (2022) <sup>[2]</sup>, A commercial aqueous ethylcellulose dispersion (Surelease) was investigated for its film-forming capabilities by in conjunction with various amounts of a plasticizer and varying amylose/butanol complex ratios. They proved that amylose could target the colon and that the amount of deterioration of the film was proportional to its amylose level.

Corresponding Author: Vinayak K Research Scholar, Monad University, Hapur, Uttar Pradesh, India In a time-controlled method, L. G. Marıa *et al.* (2023) created a diclofenac sodium matrix tablet with varying ratios of sodium chloride and Eudragit. If they changed the percentage, they found that a zero-order releasing profile could be used to target the colon.

V.R. Sinha *et al.* (2023) <sup>[4]</sup>. This review study provided a comprehensive overview of the bacterial approach to colon targeting, focusing on the microbial count and function of the colon. They went into more detail on the list of bacterially sensitive polymers for drug release in the colon, which included amylose and ethyl cellulse.

For colon-specific medication delivery, C. I. Valentine *et al.* (2014) <sup>[5]</sup> compared Eudragit FS 30D to Eudragit S100 and found that the former had a better regulated rate of dissolution. When compared to Eudragit S10087, *In vivo* scintigraphy using a mixture covered with Eudragit FS 30 D showed better results for drug release in the colon of people.

### Evaluation for Multiparticulate Micromeritic studies

**Investigations on the microstructure of pilot batches of multiparticulate:** Ciprofloxacin, ketoprofen, and 5-fluorouracil had an average particle size ranging from 1mm to 1.5mm throughout the different trial batches. Mixing different kinds of polymers in a formula changes the size of the multiparticulate particles. Size range for multiparticulate depends on content and molecular weight and viscosity of chitosan. Multiparticulate size is reduced when chitosan concentration is reduced. Ciprofloxacin and ketoprofen trial batches had tapped density values ranging from 0.49 to 0.55 g/cm<sup>3</sup>, while the tapped densities of the 5-fluorouracil test batches were between 0.6 and 0.7 g/cm<sup>3</sup>. For test runs of Ciprofloxacin and Ketoprofen, the bulk density was determined to be 0.48-0.54 g/cm<sup>3</sup>, whereas for 5-fluorouracil, it was 0.51-0.62 g/cm<sup>3</sup>.

| Table 1: Micromeritic studies of trial batches |
|------------------------------------------------|
|------------------------------------------------|

| BatchCode | AverageParticle | Bulk density         | Tapped density       | Angle ofrepose (°) |
|-----------|-----------------|----------------------|----------------------|--------------------|
|           | size(mm)        | (g/cm <sup>3</sup> ) | (g/cm <sup>3</sup> ) |                    |
|           |                 |                      |                      |                    |
| C1a       | $1.1 \pm 0.084$ | $0.51 \pm 0.02$      | $0.55 \pm 0.06$      | 29.74±1.2          |
| C2a       | $1.1 \pm 0.014$ | $0.49 \pm 0.06$      | $0.52 \pm 0.04$      | 28.54±1.1          |
| C3a       | $1.3 \pm 0.078$ | $0.48 \pm 0.03$      | $0.50 \pm 0.07$      | 30.21±1.2          |
| C4a       | $1.5 \pm 0.012$ | $0.52 \pm 0.02$      | $0.55 \pm 0.04$      | 29.84±1.3          |
| C5a       | $1.4 \pm 0.016$ | $0.53 \pm 0.04$      | $0.51 \pm 0.08$      | 28.71±1.2          |
| C1b       | $1.2 \pm 0.014$ | $0.52 \pm 0.06$      | $0.53 \pm 0.04$      | 29.74±1.2          |
| C2b       | $1.4 \pm 0.084$ | $0.48 \pm 0.04$      | $0.49 \pm 0.05$      | 28.76±1.1          |
| C3b       | $1.2 \pm 0.014$ | $0.54 \pm 0.04$      | $0.55 \pm 0.06$      | 31.21±1.2          |
| C4b       | $1.2 \pm 0.078$ | $0.49 \pm 0.02$      | $0.51 \pm 0.03$      | 29.74±1.1          |
| C5b       | $1.5 \pm 0.012$ | $0.48 \pm 0.04$      | $0.53 \pm 0.07$      | 28.54±1.2          |
| K1a       | $1.4 \pm 0.056$ | $0.52 \pm 0.07$      | $0.54 \pm 0.04$      | 29.74±1.3          |
| K2a       | $1.5 \pm 0.034$ | $0.51 \pm 0.04$      | $0.53 \pm 0.05$      | 29.82±1.2          |
| K3a       | $1.5 \pm 0.087$ | 0.51±0.02            | $0.55 \pm 0.03$      | 30.21±1.3          |
| K4a       | $1.5 \pm 0.022$ | $0.48 \pm 0.03$      | $0.51 \pm 0.02$      | 29.74±1.2          |
| K5a       | $1.5 \pm 0.075$ | $0.48 \pm 0.06$      | $0.52 \pm 0.03$      | 28.34±1.1          |
| K1b       | $1.5 \pm 0.013$ | $0.49 \pm 0.01$      | $0.50 \pm 0.07$      | 29.76±1.2          |
| K2b       | $1.4 \pm 0.054$ | $0.52 \pm 0.09$      | $0.53 \pm 0.06$      | 30.21±1.2          |
| K3b       | $1.5 \pm 0.012$ | $0.53 \pm 0.04$      | $0.52 \pm 0.04$      | 29.69±1.2          |
| K4b       | $1.1 \pm 0.064$ | $0.49 \pm 0.04$      | $0.51 \pm 0.07$      | 29.74±1.2          |
| K5b       | $1.1 \pm 0.013$ | $0.51 \pm 0.06$      | $0.53 \pm 0.03$      | 28.47±1.3          |
| 5FU1a     | $1.3 \pm 0.078$ | $0.6 \pm 0.06$       | $0.60 \pm 0.07$      | 29.74±1.2          |
| 5FU2a     | $1.5 \pm 0.012$ | $0.53 \pm 0.03$      | $0.65 \pm 0.02$      | 30.21±1.2          |
| 5FU3a     | $1.4 \pm 0.056$ | $0.55 \pm 0.02$      | $0.58 \pm 0.04$      | 29.64±1.2          |
| 5FU4a     | $1.5 \pm 0.014$ | $0.51 \pm 0.04$      | $0.60 \pm 0.03$      | 28.47±1.2          |
| 5FU5a     | $1.1 \pm 0.081$ | $0.53 \pm 0.03$      | $0.63 \pm 0.06$      | 29.74±1.1          |
| 5FU1b     | $1.5 \pm 0.014$ | $0.53 \pm 0.05$      | $0.58 \pm 0.02$      | 30.21±1.2          |
| 5FU2b     | $1.3 \pm 0.078$ | $0.62 \pm 0.02$      | $0.70 \pm 0.04$      | 29.64±1.3          |
| 5FU3b     | $1.5 \pm 0.012$ | $0.55 \pm 0.04$      | $0.64 \pm 0.08$      | 29.74±1.2          |
| 5FU4b     | $1.3 \pm 0.056$ | $0.61 \pm 0.04$      | $0.71 \pm 0.05$      | 29.64±1.1          |
| 5FU5b     | $1.5 \pm 0.012$ | $0.51 \pm 0.03$      | $0.59 \pm 0.04$      | 28.68±1.2          |

\* We performed triple analyses on each sample. (n = 3)

C=Ciprofloxacin, K=Ketoprofen and 5FU=5-Fluorouracil, Coat Composition a=10%, b=15%

# Micromeritic studies of factorial batches of multiparticulate

The size of the particles on average in the factorial batches ranged from 1mm to 1.6mm, and for Ciprofloxacin, Ketoprofen, and 5-fluorouracil, the tapped density was between 0.50-0.55 g/cm<sup>3</sup>. The bulk densities of all the random batches were between 0.48 and 0.62 g/cm<sup>3</sup>. The flow properties of all formulations were satisfactory, with angle of repose values ranging from 250 to 350, an acceptable range for multiparticulate materials.

| Parameters<br>Batches | Average particle<br>size(mm) | Bulk density<br>(g/cm <sup>3</sup> ) | Tapped density<br>(g/cm <sup>3</sup> ) | Angle ofrepose<br>(°) |
|-----------------------|------------------------------|--------------------------------------|----------------------------------------|-----------------------|
| C1                    | $1.2 \pm 0.054$              | $0.50 \pm 0.05$                      | 0.53±0.05                              | 31.24±1.2             |
| C2                    | $1.1 \pm 0.015$              | $0.50 \pm 0.04$                      | 0.51±0.03                              | 29.54±1.4             |
| C3                    | $1.3 \pm 0.012$              | $0.50 \pm 0.03$                      | 0.53±0.05                              | 30.21±1.3             |
| C4                    | 1.2 ±0.015                   | $0.52 \pm 0.06$                      | 0.55±0.06                              | 29.52±1.2             |
| C5                    | $1.5 \pm 0.013$              | $0.53 \pm 0.04$                      | 0.51±0.08                              | 28.51±1.2             |
| C6                    | $1.2 \pm 0.014$              | $0.52 \pm 0.06$                      | 0.53±0.03                              | 29.74±1.2             |
| C7                    | $1.4 \pm 0.084$              | $0.49 \pm 0.04$                      | 0.50±0.08                              | 30.46±1.3             |
| C8                    | $1.2 \pm 0.014$              | $0.53 \pm 0.04$                      | 0.51±0.08                              | 30.41±1.2             |
| C9                    | $1.2 \pm 0.078$              | $0.49 \pm 0.02$                      | 0.51±0.03                              | 32.32±1.1             |
| C10                   | 1.5 ±0.012                   | $0.48 \pm 0.04$                      | 0.53±0.07                              | 28.54±1.2             |
| C11                   | $1.4 \pm 0.056$              | $0.52 \pm 0.07$                      | 0.54±0.04                              | 29.74±1.4             |
| C12                   | 1.6 ± 0.033                  | $0.50 \pm 0.05$                      | 0.53±0.05                              | 29.82±1.3             |
| C13                   | $1.5 \pm 0.053$              | $0.51 \pm 0.02$                      | 0.55±0.03                              | 30.21±1.4             |
| C14                   | $1.5 \pm 0.022$              | $0.48 \pm 0.03$                      | 0.51±0.02                              | 29.63±1.2             |
| C15                   | $1.5 \pm 0.045$              | $0.50 \pm 0.07$                      | 0.53±0.06                              | 31.35±1.1             |
| C16                   | $1.5 \pm 0.023$              | $0.52 \pm 0.01$                      | 0.55±0.04                              | 29.56±1.4             |
| C17                   | $1.4 \pm 0.054$              | $0.52 \pm 0.08$                      | 0.53±0.05                              | 30.31±1.3             |

Table 2: Micromeritic studies of factorial batches of Ciprofloxacin

\* We performed triple analyses on each sample. (n = 3)

| Table 3: Micron | meritic studi | es of factor | rial batches | of Ketoprofen |
|-----------------|---------------|--------------|--------------|---------------|
|-----------------|---------------|--------------|--------------|---------------|

| Batch Code | Average particle size(µm) | Bulk density(g/cm <sup>3</sup> ) | Tapped density (g/cm <sup>3</sup> ) | Angle of repose (°) |
|------------|---------------------------|----------------------------------|-------------------------------------|---------------------|
| K1         | $1.4 \pm 0.051$           | 0.49±0.03                        | 0.50±0.06                           | 31.34±1.3           |
| K 2        | 1.1±0.016                 | 0.50±0.06                        | 0.52±0.03                           | 29.54±1.1           |
| K 3        | 1.3±0.051                 | 0.49±0.01                        | $0.50\pm0.07$                       | 30.21±1.2           |
| K 4        | 1.3±0.015                 | 0.53±0.09                        | $0.54 \pm 0.04$                     | 30.64±1.2           |
| K 5        | 1.3±0.014                 | 0.49±0.03                        | $0.52 \pm 0.08$                     | 30.71±1.4           |
| K 6        | $1.5 \pm 0.011$           | $0.52 \pm 0.06$                  | $0.53 \pm 0.03$                     | 31.41±1.2           |
| K 7        | 1.5±0.024                 | 0.49±0.04                        | $0.53 \pm 0.05$                     | 30.76±1.2           |
| K 8        | 1.3±0.015                 | 0.52±0.04                        | $0.55 \pm 0.06$                     | 31.21±1.3           |
| K 9        | $1.3 \pm 0.068$           | 0.49±0.02                        | 0.51±0.03                           | 29.74±1.2           |
| K 10       | 1.6±0.015                 | 0.50±0.04                        | $0.53 \pm 0.07$                     | 31.54±1.3           |
| K 11       | 1.3±0.055                 | 0.52±0.07                        | $0.54{\pm}0.04$                     | 30.74±1.2           |
| K 12       | 1.6±0.032                 | 0.51±0.04                        | $0.53 \pm 0.05$                     | 29.82±1.4           |
| K 13       | $1.4\pm0.065$             | 0.54±0.02                        | $0.55 \pm 0.03$                     | 30.21±1.2           |
| K 14       | 1.5±0.023                 | 0.49±0.03                        | 0.51±0.02                           | 29.74±1.2           |
| K 15       | $1.4\pm0.045$             | 0.50±0.06                        | 0.52±0.03                           | 31.34±1.3           |
| K 16       | 1.5 ±0.013                | 0.49±0.01                        | 0.50±0.07                           | 30.76±1.2           |
| K 17       | 1.3±0.053                 | 0.52±0.09                        | 0.53±0.06                           | 30.21±1.3           |

\* We performed triple analyses on each sample. (n = 3)

## Table 4: Micromeritic studies of factorial batches of 5- Fluorouracil

| Batch Code | Average particle size(µm) | Bulk density (g/cm <sup>3</sup> ) | Tapped density (g/cm <sup>3</sup> ) | Angle of repose (o) |
|------------|---------------------------|-----------------------------------|-------------------------------------|---------------------|
| 5FU1       | $1.4 \pm 0.074$           | 0.51±0.04                         | $0.54{\pm}0.06$                     | 29.74±1.3           |
| 5FU 2      | 1.5±0.013                 | 0.61±0.06                         | $0.50 \pm 0.04$                     | 31.54±1.2           |
| 5FU 3      | 1.5±0.041                 | 0.51±0.05                         | $0.54{\pm}0.06$                     | 30.41±1.3           |
| 5FU 4      | 1.5±0.012                 | 0.60±0.02                         | $0.55 \pm 0.05$                     | 29.84±1.2           |
| 5FU 5      | 1.4±0.013                 | 0.53±0.04                         | 0.51±0.08                           | 30.73±1.1           |
| 5FU 6      | 1.3±0.014                 | 0.52±0.06                         | 0.53±0.04                           | 29.74±1.2           |
| 5FU 7      | $1.4\pm0.084$             | 0.51±0.03                         | $0.55 \pm 0.05$                     | 30.74±1.2           |
| 5FU 8      | 1.4±0.013                 | 0.52±0.04                         | $0.55 \pm 0.06$                     | 31.21±1.4           |
| 5FU 9      | $1.5 \pm 0.078$           | 0.49±0.02                         | 0.51±0.03                           | 29.74±1.2           |
| 5FU 10     | 1 5+0 012                 | 0 50+0 04                         | 0 53+0 07                           | 30 44+1 4           |

| 5FU 11 | $1.4\pm0.053$   | $0.52 \pm 0.07$ | $0.54 \pm 0.04$ | 29.74±1.2 |
|--------|-----------------|-----------------|-----------------|-----------|
| 5FU 12 | $1.5 \pm 0.036$ | 0.51±0.04       | 0.53±0.05       | 29.82±1.3 |
| 5FU 13 | $1.5 \pm 0.084$ | 0.51±0.02       | $0.55 \pm 0.03$ | 30.21±1.2 |
| 5FU 14 | $1.4\pm0.026$   | $0.62 \pm 0.06$ | $0.55 \pm 0.02$ | 29.74±1.4 |
| 5FU 15 | 1.6±0.073       | $0.50\pm0.05$   | 0.52±0.03       | 30.33±1.2 |
| 5FU 16 | 1.5 ±0.012      | 0.6±0.03        | $0.50 \pm 0.04$ | 30.76±1.2 |
| 5FU 17 | $1.4 \pm 0.052$ | 0.52±0.09       | 0.53±0.06       | 30.21±1.3 |

\* We performed triple analyses on each sample. (n = 3)

### Swelling ratio of multiparticulate Swelling ratio of trial batches

The amount of growth to time was determined. Both the rate of hydration and the multiparticulate's weight rise were observed to boost the swelling ratio. Ciprofloxacin C3a, C5a, C3b, and C5b had a higher swelling ratio in the experimental batch than the other formulations. The amount that K3a, K5a, K3b, and K5b rise in the Ketoprofen trial batches was much higher than that of the other batches.

Among the 5-fluorouracil formulations tested, 5FU3a, 5FU5a, 5FU3b, and 5FU5b exhibited the best batter swellability. The formulation's higher Chitosan content could be to blame. All of the batches slowly grow at first, as shown in Tables 3, 4, and 5. However, they reach their full size at different ratios. In his talk, Ibrahim El-Gibaly covered the topic of microparticle swelling and how it's affected by ambient pH. He said that lower pH values or water tend to have a larger swelling effect than higher ones.

**Table 5:** Ciprofloxacin swelling ratio results from clinical trials

| Batch | Swelling ratio of multiparticulate adhering to the tissue |                     |           |           |           |           |           |           |  |  |  |
|-------|-----------------------------------------------------------|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--|
|       | In                                                        | In pH 7.4<br>Time/h |           |           |           |           |           |           |  |  |  |
| coue  | Ti                                                        |                     |           |           |           |           |           |           |  |  |  |
|       | 0                                                         | 1                   | 2         | 4         | 6         | 8         | 10        | 12        |  |  |  |
| Cla   | 0                                                         | 0.32 ±0.15          | 0.58±0.14 | 0.72±0.16 | 0.84±0.12 | 0.94±0.12 | 1.15±0.15 | 1.24±0.13 |  |  |  |
| C2a   | 0                                                         | 0.43±0.14           | 0.53±0.12 | 0.61±0.15 | 0.91±0.19 | 1.22±0.16 | 1.40±0.13 | 1.50±0.18 |  |  |  |
| C3a   | 0                                                         | 0.44±0.13           | 0.65±0.15 | 0.76±0.15 | 0.84±0.11 | 0.92±0.13 | 1.23±0.15 | 1.52±0.15 |  |  |  |
| C4a   | 0                                                         | 0.43±0.15           | 0.54±0.12 | 0.62±0.13 | 0.76±0.14 | 1.31±0.15 | 1.39±0.13 | 1.42±0.13 |  |  |  |
| C5a   | 0                                                         | 0.34±0.12           | 0.45±0.13 | 0.64±0.13 | 0.80±0.15 | 0.92±0.14 | 1.24±0.15 | 1.64±0.15 |  |  |  |
| C1b   | 0                                                         | 0.35±0.13           | 0.58±0.15 | 0.73±0.12 | 0.87±0.15 | 0.94±0.13 | 1.22±0.13 | 1.28±0.13 |  |  |  |
| C2b   | 0                                                         | 0.45±0.14           | 0.52±0.12 | 0.72±0.14 | 0.91±0.14 | 1.33±0.15 | 1.42±0.15 | 1.54±0.14 |  |  |  |
| C3b   | 0                                                         | 0.38±0.15           | 0.62±0.13 | 0.75±0.14 | 0.83±0.15 | 0.92±0.15 | 1.25±0.13 | 1.55±0.15 |  |  |  |
| C4b   | 0                                                         | 0.42±0.14           | 0.57±0.13 | 0.62±0.12 | 0.87±0.14 | 1.56±0.13 | 1.63±0.13 | 1.52±0.15 |  |  |  |
| C5b   | 0                                                         | 0.36±0.15           | 0.46±0.16 | 0.68±0.15 | 0.75±0.14 | 0.83±0.13 | 0.92±0.17 | 1.63±0.14 |  |  |  |

\*We performed triple analyses on each sample. (n = 3)



Fig 1: Swelling ratio of trial batches of Ciprofloxacin

| Swelling ratio of multiparticulate adhering to the tissue |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| In pH 7.4                                                 |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Time/h                                                    |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 0                                                         | 1                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 0                                                         | 0.40±0.15                                                                                       | 0.51±0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.64±0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.75±0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.86±0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.19±0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.28±0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 0                                                         | 0.45±0.14                                                                                       | 0.53±0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.63±0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.92±0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.23±0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.30±0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.51±0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 0                                                         | 0.42±0.13                                                                                       | 0.65±0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.76±0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.84±0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.92±0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.22±0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.42±0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 0                                                         | 0.48±0.15                                                                                       | 0.54±0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.68±0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.86±0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.36±0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.41±0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.50±0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 0                                                         | 0.32±0.12                                                                                       | 0.47±0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.66±0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.73±0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.84±0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.41±0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.70±0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 0                                                         | 0.34±0.14                                                                                       | 0.58±0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.73±0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.87±0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.94±0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.23±0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.28±0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 0                                                         | 0.45±0.14                                                                                       | 0.52±0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.88±0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.94±0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.33±0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.42±0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.54±0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 0                                                         | 0.38±0.15                                                                                       | 0.62±0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.75±0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.83±0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.92±0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.25±0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.45±0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 0                                                         | 0.47±0.14                                                                                       | 0.58±0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.72±0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.87±0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.56±0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.62±0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.52±0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 0                                                         | 0.36±0.15                                                                                       | 0.46±0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.68±0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.75±0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.93±0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.31±0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.65±0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                           | Sw<br>In<br>Tin<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Swelling ratio           In pH 7.4           Time/h           0         1           0         0.40±0.15           0         0.45±0.14           0         0.42±0.13           0         0.42±0.13           0         0.42±0.14           0         0.32±0.12           0         0.34±0.14           0         0.45±0.14           0         0.45±0.14           0         0.45±0.14           0         0.45±0.14           0         0.38±0.15           0         0.47±0.14           0         0.36±0.15 | Swelling ratio of multipar           In pH 7.4           Time/h           0         1           2           0         0.40±0.15           0         0.45±0.14           0         0.45±0.14           0         0.45±0.14           0         0.42±0.13           0         0.42±0.13           0         0.48±0.15           0         0.48±0.15           0         0.32±0.12           0         0.32±0.12           0         0.34±0.14           0         0.34±0.14           0         0.34±0.14           0         0.45±0.14           0         0.45±0.14           0         0.45±0.14           0         0.45±0.14           0         0.45±0.14           0         0.45±0.14           0         0.45±0.14           0         0.45±0.14           0         0.45±0.14           0         0.45±0.15           0         0.45±0.14           0         0.36±0.15           0.46±0.16 | Swelling ratio of multiparticulate ad           In pH 7.4           Time/h           0         1         2         4           0         0.40±0.15         0.51±0.15         0.64±0.16           0         0.45±0.14         0.53±0.13         0.63±0.15           0         0.42±0.13         0.65±0.15         0.76±0.15           0         0.42±0.12         0.47±0.15         0.66±0.12           0         0.32±0.12         0.47±0.15         0.66±0.12           0         0.34±0.14         0.58±0.15         0.73±0.13           0         0.45±0.14         0.52±0.13         0.88±0.14           0         0.38±0.15         0.62±0.16         0.75±0.14           0         0.47±0.14         0.58±0.13         0.72±0.12           0         0.36±0.15         0.46±0.16         0.68±0.14 | Swelling ratio of multiparticulate adhering to th           In pH 7.4           Time/h           0         1         2         4         6           0         0.40±0.15         0.51±0.15         0.64±0.16         0.75±0.13           0         0.45±0.14         0.53±0.13         0.63±0.15         0.92±0.19           0         0.42±0.13         0.65±0.15         0.76±0.15         0.84±0.14           0         0.48±0.15         0.54±0.14         0.68±0.13         0.86±0.14           0         0.32±0.12         0.47±0.15         0.66±0.12         0.73±0.16           0         0.34±0.14         0.58±0.15         0.73±0.13         0.87±0.15           0         0.45±0.14         0.52±0.13         0.88±0.14         0.94±0.14           0         0.38±0.15         0.62±0.16         0.75±0.14         0.83±0.14           0         0.47±0.14         0.58±0.13         0.72±0.12         0.87±0.13           0         0.36±0.15         0.46±0.16         0.68±0.14         0.75±0.12 | Swelling ratio of multiparticulate adhering to the fissue           In pH 7.4           Time/h           0         1         2         4         6         8           0         0.40±0.15         0.51±0.15         0.64±0.16         0.75±0.13         0.86±0.12           0         0.45±0.14         0.53±0.13         0.63±0.15         0.92±0.19         1.23±0.14           0         0.42±0.13         0.65±0.15         0.76±0.15         0.84±0.14         0.92±0.13           0         0.48±0.15         0.54±0.14         0.68±0.13         0.86±0.14         1.36±0.15           0         0.32±0.12         0.47±0.15         0.66±0.12         0.73±0.16         0.84±0.14           0         0.34±0.14         0.58±0.15         0.73±0.13         0.87±0.15         0.94±0.13           0         0.45±0.14         0.52±0.13         0.88±0.14         0.94±0.13         0.94±0.13           0         0.45±0.14         0.52±0.16         0.75±0.14         0.83±0.14         0.92±0.15           0         0.38±0.15         0.62±0.16         0.75±0.12         0.87±0.13         0.56±0.16           0         0.36±0.15         0.46±0.16         0.68±0.14         0.75±0.12         0.93±0.13 <td>Swelling ratio of multiparticulate adhering to the fissue           In pH 7.4           Time/h           0         1         2         4         6         8         10           0         0.40±0.15         0.51±0.15         0.64±0.16         0.75±0.13         0.86±0.12         1.19±0.15           0         0.45±0.14         0.53±0.13         0.63±0.15         0.92±0.19         1.23±0.14         1.30±0.13           0         0.42±0.13         0.65±0.15         0.76±0.15         0.84±0.14         0.92±0.13         1.22±0.15           0         0.48±0.15         0.54±0.14         0.68±0.13         0.86±0.14         1.36±0.15         1.41±0.13           0         0.32±0.12         0.47±0.15         0.66±0.12         0.73±0.16         0.84±0.14         1.41±0.15           0         0.34±0.14         0.58±0.15         0.73±0.13         0.87±0.15         0.94±0.13         1.23±0.12           0         0.45±0.14         0.52±0.13         0.88±0.14         0.94±0.13         1.23±0.12           0         0.38±0.15         0.62±0.16         0.75±0.14         0.83±0.14         0.92±0.15         1.25±0.15           0         0.38±0.15         0.62±0.16         0.75±0.12         0.</td> | Swelling ratio of multiparticulate adhering to the fissue           In pH 7.4           Time/h           0         1         2         4         6         8         10           0         0.40±0.15         0.51±0.15         0.64±0.16         0.75±0.13         0.86±0.12         1.19±0.15           0         0.45±0.14         0.53±0.13         0.63±0.15         0.92±0.19         1.23±0.14         1.30±0.13           0         0.42±0.13         0.65±0.15         0.76±0.15         0.84±0.14         0.92±0.13         1.22±0.15           0         0.48±0.15         0.54±0.14         0.68±0.13         0.86±0.14         1.36±0.15         1.41±0.13           0         0.32±0.12         0.47±0.15         0.66±0.12         0.73±0.16         0.84±0.14         1.41±0.15           0         0.34±0.14         0.58±0.15         0.73±0.13         0.87±0.15         0.94±0.13         1.23±0.12           0         0.45±0.14         0.52±0.13         0.88±0.14         0.94±0.13         1.23±0.12           0         0.38±0.15         0.62±0.16         0.75±0.14         0.83±0.14         0.92±0.15         1.25±0.15           0         0.38±0.15         0.62±0.16         0.75±0.12         0. |  |  |

We performed triple analyses on each sample. (n = 3)



Fig 2: Swelling ratio of trial batches of Ketoprofen

Table 7: Swelling ratio of trial batches of 5-Fluorouracil

|               | Sw  | Swelling ratio of multiparticulate adhering to the tissue |             |           |           |           |           |           |  |  |  |
|---------------|-----|-----------------------------------------------------------|-------------|-----------|-----------|-----------|-----------|-----------|--|--|--|
| Batch<br>Code | In  | In pH 7.4                                                 |             |           |           |           |           |           |  |  |  |
| couc          | Tiı | Time/h                                                    |             |           |           |           |           |           |  |  |  |
|               | 0   | 1                                                         | 2           | 4         | 6         | 8         | 10        | 12        |  |  |  |
| 5FU1a         | 0   | 0.38±0.12                                                 | 0.51±0.16   | 0.66±0.14 | 0.85±0.11 | 0.93±0.13 | 1.13±0.15 | 1.26±0.14 |  |  |  |
| 5FU2a         | 0   | 0.47±0.14                                                 | 0.54±0.14   | 0.63±0.15 | 0.92±0.19 | 1.23±0.16 | 1.3±0.015 | 1.56±0.18 |  |  |  |
| 5FU3a         | 0   | 0.46±0.13                                                 | 0.65±0.15   | 0.76±0.15 | 0.84±0.16 | 0.92±0.13 | 1.32±0.13 | 1.42±0.12 |  |  |  |
| 5FU 4a        | 0   | 0.48±0.14                                                 | 0.55±0.14   | 0.63±0.13 | 0.76±0.13 | 1.36±0.14 | 1.46±0.12 | 1.54±0.13 |  |  |  |
| 5FU 5a        | 0   | 0.47±0.15                                                 | 0.54±0.14   | 0.68±0.14 | 0.86±0.14 | 1.36±0.15 | 1.61±0.13 | 1.69±0.14 |  |  |  |
| 5FU 1b        | 0   | 0.35±0.14                                                 | 0.58±0.13   | 0.73±0.15 | 0.87±0.14 | 0.94±0.14 | 1.30±0.16 | 1.38±0.14 |  |  |  |
| 5FU 2b        | 0   | 0.45±0.18                                                 | 0.52±0.12   | 0.87±0.15 | 0.99±0.14 | 1.33±0.16 | 1.42±0.15 | 1.54±0.14 |  |  |  |
| 5FU 3b        | 0   | 0.38±0.15                                                 | 0.62±0.15   | 0.75±0.14 | 0.83±0.15 | 0.92±0.15 | 1.25±0.15 | 1.45±0.15 |  |  |  |
| 5FU 4b        | 0   | 0.37±0.14                                                 | 0.52±0.13   | 0.66±0.13 | 0.83±0.13 | 0.90±0.13 | 1.12±0.12 | 1.25±0.13 |  |  |  |
| 5FU 5b        | 0   | 0.36±0.15                                                 | 0.46±0.16   | 0.68±0.15 | 0.75±0.14 | 0.83±0.15 | 0.92±0.17 | 1.66±0.14 |  |  |  |
| Wamanfa       |     |                                                           | lucas on as | ah comalo | (         | 1         |           | •         |  |  |  |

We performed triple analyses on each sample. (n = 3)



Fig 3: Swelling ratio of trial batches of 5-Fluorouracil

### Swelling studies of factorial batches

The batch of Ciprofloxacin C4 had the highest swelling ratio, reading  $1.81\pm0.15$ . It was chosen as the factorial batch with the highest swelling ratio. The swelling ratio for K6, K10, K14, and K16 was higher than the other three doses of Ketoprofen. The batch K10 had the most growth., measuring  $1.81\pm0.18$ . Batch 5FU15 out of the four 5-

fluorouracil factorial batches exhibited the highest swelling, at  $1.83\pm0.12$ , in comparison to the other formulations. Batches 5FU11, 5FU12, 5FU13, and 5FU15 all demonstrate greater swellability. The formulation's higher Chitosan content could be to blame. All of the batches gradually inflate at first, but as shown in tables 6, 7, and 8, they reach their maximum swelling at varying concentrations.

Table 8: Swelling ratio of factorial batches of Ciprofloxacin

|               | Sv | velling ratio | of multipa | ticulate adl | nering to th | e tissue  |           |               |  |  |  |  |
|---------------|----|---------------|------------|--------------|--------------|-----------|-----------|---------------|--|--|--|--|
| Batch<br>Code | In | In pH 7.4     |            |              |              |           |           |               |  |  |  |  |
| 0000          | Тi | Time/h        |            |              |              |           |           |               |  |  |  |  |
|               | 0  | 1             | 2          | 4            | 6            | 8         | 10        | 12            |  |  |  |  |
| C1            | 0  | 0.42±0.13     | 0.52±0.13  | 0.64±0.16    | 0.75±0.12    | 0.98±0.16 | 1.29±0.15 | 1.68±0.12     |  |  |  |  |
| C2            | 0  | 0.45±0.14     | 0.54±0.14  | 0.62±0.15    | 0.94±0.15    | 1.24±0.16 | 1.34±0.12 | 1.62±0.17     |  |  |  |  |
| C3            | 0  | 0.43±0.13     | 0.65±0.15  | 0.76±0.15    | 0.84±0.13    | 0.92±0.13 | 1.35±0.15 | 1.62±0.12     |  |  |  |  |
| C4            | 0  | 0.48±0.15     | 0.54±0.18  | 0.68±0.18    | 0.86±0.14    | 1.36±0.15 | 1.61±0.13 | 1.81±0.15     |  |  |  |  |
| C5            | 0  | 0.42±0.12     | 0.57±0.17  | 0.57±0.15    | 0.74±0.15    | 0.94±0.14 | 0.94±0.15 | 1.61±0.15     |  |  |  |  |
| C6            | 0  | 0.45±0.13     | 0.58±0.16  | 0.73±0.14    | 0.87±0.17    | 0.98±0.13 | 1.27±0.13 | 1.53±0.13     |  |  |  |  |
| C7            | 0  | 0.55±0.14     | 0.52±0.13  | 0.78±0.15    | 0.93±0.16    | 1.31±0.16 | 1.42±0.12 | 1.68±0.14     |  |  |  |  |
| C8            | 0  | 0.48±0.15     | 0.62±0.14  | 0.75±0.14    | 0.83±0.15    | 0.92±0.15 | 1.25±0.14 | 1.55±0.15     |  |  |  |  |
| C9            | 0  | 0.57±0.14     | 0.58±0.14  | 0.72±0.12    | 0.87±0.14    | 1.26±0.13 | 1.44±0.17 | 1.52±0.15     |  |  |  |  |
| C10           | 0  | 0.46±0.14     | 0.56±0.15  | 0.68±0.15    | 0.75±0.16    | 1.23±0.11 | 1.42±0.16 | 1.53±0.14     |  |  |  |  |
| C11           | 0  | 0.49±0.15     | 0.61±0.14  | 0.74±0.15    | 0.85±0.13    | 0.96±0.12 | 1.19±0.14 | $1.60\pm0.12$ |  |  |  |  |
| C12           | 0  | 0.47±0.13     | 0.54±0.15  | 0.63±0.13    | 0.92±0.19    | 1.23±0.16 | 1.36±0.15 | 1.56±0.18     |  |  |  |  |
| C13           | 0  | 0.54±0.13     | 0.65±0.15  | 0.76±0.16    | 0.84±0.17    | 0.92±0.13 | 1.32±0.16 | 1.62±0.12     |  |  |  |  |
| C14           | 0  | 0.58±0.12     | 0.54±0.13  | 0.68±0.11    | 0.86±0.14    | 1.36±0.15 | 1.51±0.13 | 1.64±0.12     |  |  |  |  |
| C15           | 0  | 0.42±0.12     | 0.57±0.14  | 0.67±0.14    | 0.74±0.15    | 0.84±0.14 | 0.94±0.15 | 1.51±0.15     |  |  |  |  |
| C16           | 0  | 0.45±0.16     | 0.58±0.13  | 0.63±0.16    | 0.87±0.15    | 0.94±0.13 | 1.27±0.18 | 1.58±0.13     |  |  |  |  |
| C17           | 0  | 0.55±0.15     | 0.52±0.12  | 0.78±0.15    | 0.98±0.14    | 1.34±0.16 | 1.42±0.16 | 1.54±0.14     |  |  |  |  |

### Conclusion

Covering the mucosal retention with a 10% w/w mix of eudragit and L also helps target the multiparticulate in the

gut. This study describes an innovative new way to send drugs to the gut. It uses multiparticulate chitosan and guar gum that are covered with eudragit S and L 100 at a 10%

weight-to- weight ratio.

### References

- 1. Sinha VR, Kumria R. Binders for colon specific drug delivery: an *in vitro* evaluation. Int. J Pharma. 2022;249:23-31.
- Leong CW, Newton JM, Basit AW, Podczecka F, Cummings JH, Ring SG, *et al.* The formation of colonic digestible films of amylose and ethylcellulose from aqueous dispersions at temperatures below 37 °C. Eur. J Pharma Biopharma. 2022;54:291-297.
- 3. Gonzalez-Rodrigueza ML, Maestrellib F, Murab P, Rabascoa AM. *In vitro* release of sodium diclofenac from a central core matrix tablet aimed for colonic drug delivery. Eur. J Pharma Sci. 2023;20:125-131.
- 4. Sinha VR, Kumria R. Microbially triggered drug delivery to the colon. Eur. J Pharma Sci. 2023;18:3-18.
- 5. Valentine CI, Kendall RA, Basit AW. Drug delivery to colon. The drug deliveries Report Sprig/summer 2014, Pharma ventures Ltd.; c2014.
- 6. Davis, *et al.* The *in-vivo* evaluation of an osmotic device (osmet) using gamma scintigraphy. J Pharm Pharmacol. 2014;36:740-742.
- Mirelman D, De Meester F, Storlasky T, Burchard GD, Ernest-Cabera K, Wilchek M, *et al.* Effects of Covalently bound silica-nitroimidazole drug particles on Entamoeba histolytica. J Infect Dis. 2019;159:303-309.
- 8. Tozaki H, Komoike J, Tada C, Maruyama T, Terabe A, Suzuki T, *et al.* Chitosan capsules for colon-specific drug delivery: Improvement of insulin absorption from the rat colon. J Pharm Sci. 2017;86:1016-1021.
- Bauer KH, Kesselhut JF. Novel pharmaceutical excipients for colon targeting. S.T.P. Pharma Sci. 2015;5:54-59.
- 10. Stevens H, Wilson C, Welling P, Bakhshaee M, Binns J, Perkins A, *et al.* Evaluation of Pulsincap<sup>™</sup> to provide regional delivery of dofetilide to the human GI tract. Int J Pharm. 2022;236:27-34.
- Beale JM. In Anti-infective Agents. Wilsons and Gisvold's Textbook of organic medicinal & pharmaceutical chemistry, 11<sup>th</sup> edn. John H Block, John M. Beale, Jr., eds. Lipincott Williams and Wilkins USA. 259-260.
- 12. Azad Khan KA, Piris J, Truelove SC. An experiment to determine the active therapeutic moiety of Sulphasalazine. Lancet. 2017;2:892-895.
- 13. Bogentoft C, Eskilsson C, Jonsson UE, Lagerstorm PO, Lovgren K, Rosen L, *et al.* Delivery of drug to the colon by means of a new microencapsulated oral dosages form. Acta Pharm Suec. 2013;20:311-314.
- 14. Watkinson G. Sulphasalazine: A Review of forty years' experience drugs. 32(1):1-11.